RenderNet: A deep convolutional network for differentiable rendering from 3D shapes
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ADVANTAGES RENDERING RESULTS

- A novel CNN architecture that enables both rendering and Input  Phong Contour Cartoon AO
inverse rendering. g

- Generalizes well to objects of unseen category and more
complex scene geometry.

. Capable of producing textured images from textured
voxel grids, where the input textures can be RGB colors or
deep features computed from semantic inputs.
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- Easy to integrate into other modules for applications, such as A 3
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texturing or image-based reconstruction. 0
%‘g RenderNet Phong 25.39
=3 EC Phong 24.21

EC-Deep Phong 20.88

RenderNet Contour 19.70
RenderNet Toon 17.777
RenderNet AO 22.37
RenderNet Face 27.43
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- Focus on losses and
training regimes M
- Make few assumptions S
about the 3D world and the ™ == s
image formation process

- Rotation in latent space B
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renderers are limited to a S AN | $ - $- %»9 - Using adversarial loss instead of MSE or BCE

single fixed shader. [3, 4] ‘ ' '

Results Same texture-Same face-Different lighting
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INVERSE RENDERING RESULTS
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| SO U Lt - Considering other 3D data types (mesh, point clouds, etc.)

. Learning multiple shaders with one network
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camera coordinate system) followed by trilinear resampling.
- 3D convolutions morph the scene and enable perspective
camera views.
- 2D convolutions compute shading color for each pixel
- Projection unit:
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« Pixel-wise loss function: 20 Code available at
1 0 . %‘*ﬁ github.com/thunguyenphuoc/RenderNet
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http://github.com/thunguyenphuoc/RenderNet

