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DISCUSSSION
• Using adversarial loss instead of MSE or BCE
• Using more efficient voxel representation (octree)
• Considering other 3D data types (mesh, point clouds, etc.)
• Learning multiple shaders with one network

INVERSE RENDERING RESULTS
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where I is the observed image and f is our pre-trained 
RenderNet. z’ is the shape vector to reconstruct, g is the 
decoder of a pretrained 3D auto-encoder, θ and η are the 
pose and lighting parameters, and Ф is the texture vector.

MAP estimation:

where μ and Σ are the mean and covariance of z’ estimated 
from the training set respectively.

RENDERING RESULTS
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Generalisation
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• Rigid-body transformation (world coordinate system to 
camera coordinate system) followed by trilinear resampling.

• 3D convolutions morph the scene and enable perspective 
camera views.

• 2D convolutions compute shading color for each pixel
• Projection unit:  

• Pixel-wise loss function:

• Focus on losses and 
training regimes

• Make few assumptions 
about the 3D world and the 
image formation process

• Rotation in latent space 
using a CNN is hard! [1, 2]

• Do not generalise well to 
different object categories

• Current differentiable 
renderers are limited to a 
single fixed shader. [3, 4]

CURRENT APPROACHES

[2]

[1]

• A novel CNN architecture that enables both rendering and  
inverse rendering.

• Generalizes well to objects of unseen category and more 
complex scene geometry. 

• Capable of producing textured images from textured  
voxel grids, where the input textures can be RGB colors or 
deep features computed from semantic inputs. 

• Easy to integrate into other modules for applications, such as 
texturing or image-based reconstruction.
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